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A numerical algorithm is presented for two-dimensional Stokes
equations {plane and axisymmetric case} with pressure and filtration
boundary conditions. The numerical procedure is based on a
divergence-free finite element method and is applicable to multiply
connected domains. Comparisons between two types of finite elements
are performed in order to choose the better one. The numerical method
is tested on flows with known numerical and analytical solutions and
on different grids. Stress boundary conditions are briefly discussed and
compared with pressure ones. The influence of a closely placed outlet
an the accuracy of numerical results is studied. Numerical examples are
presanted, including flow past a system of bodies in a channel, flows
in branched channels with or without particles, and in channels of
arbitrary shape with filtrating walls.  © 1994 Academic Press, Inc.

L. INTRODUCTION

A finite element scheme of divergence-free type is
presented for the solution of creeping flow equations for an
incompressible fluid in gencral muitiply connected domains.
The Stokes equations describe the dynamics of low
Reynolds number liguids and thus are applicable to
low-scale problems and te viscous media at small velocities.
Different types of boundary conditions (B.C.) can be
imposed—prescribed velocity (Dirichlet B.C.), prescribed
stress, prescribed pressure, filiration (in this order they are
described in Section 2 in i, i, iii, iii). All possible combina-
tions of these boundary conditions may occur in applica-
tiens. The latter two types of boundary conditions are more
rarely used in numerical modelling and they have been the
main object of our interest. In fact these two types of B.C.
are variants of a more common type- - prescribed tangential
velogity and preseribed normal component of stress tensor.
A typical feature of such models is that fluxes through onc
or more parts of the boundary are unknown.

The correctness of the pressure boundary conditions lor
Stokes equations is proved in [1] and for Navier-Stokes
cquations in [ 27, where a numerical example for a {low past
a body is also presented. The correctness of the filtration
B.C. is proved in [3]. A velocity-pressure linite element
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method is employed for numerical solution and standard
error estimates are obtained in [3].

The pressure B.C. for Navier-Stokes equations are also
considered in [4], where an existence and uniqueness result
is presenied, as well as numerical results for a flow in a right-
angle ptanar branch. A finite difference method of fractional
steps type is used. A more complete investigation of this
plane problem is given in [5], using a velocity—pressure
finite clement method (FEM). The pressure B.C. in the
context of velocity-pressure FEM are considered in [6]. A
finite element numerical method is proposed in [7] for
viscoelastic liquid flows with nonstandard B.C., including
pressure B.C,

To us only a few investigations are available on the
numerical methods for Stokes and Navier-Stokes equations
with stress, pressure, and filtration B.C. But in many cases
these are more natural than prescribed velocity B.C,
especially for internal flows. Such boundary value problems
model various processes in enginecring, biotechnology,
and biomedicine. In this paper we concentrate on the
divergence-free approach, which offers some advantages—a
relatively small number of unknowns and a positive definite
linear system of equations to be solved numerically. Some
preliminary information on the subject of this paper is
presented in [8]. A related numerical method and some
applications are presented in [9-117], but only for Dirichlet
B.C. An interesting feature of the numerical method
presented is that, although the pressure plays important role
in the boundary conditions, it is not directly involved in the
numerical scheme.

From a hydromechanical point of view this paper might
be considered as a development of [12-14], where a
numerical method of finite difference type is proposed for
doubly connected domains with Dirichlet B.C. It is based on
a coordinate transform of the computational domain into a
standard domain consisting of rectangles.

In the case of flows in channels we usually know the
pressure drop between both ends but not the velocities.
Thus it is more natural to impose pressure B.C. They allow
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a description of the flux through a channel with a particle as
a function of the position of the particle and its shape.
In [15] the influence of the pressure drop on a single
erythrocyte’s shape is shown for a fixed but deformable
particle in a simply connected domain. The advantages of
pressure boundary conditions seem to be even more
significant in the unsteady case and for flows driven by
pressure pulsation,

Flows in a branched channel, in systems of channels and
in devices with many inlets or outlets are important for
many engineering applications and in biomedicine, but they
have not been studied systematically yet. The relatively low
number of investigations here seems to be related to the fact
that little attention is payed to nonstandard types of B.C.
Studies [4, 57 on a right-angle planar channel were already
mentioned. The case when the channel is splitting into two
symmetrical branches is considered in [16] for moderate
Reynolds numbers using a stream function-vorticity finite
difference method. The problem is treated in the half
domain, which is simply connected; Dirichlet B.C. are
applied. More general cases, when the branches are with
different diameters, the enbranchment is not symmetric or
otherwise more complicated, and cases of networks of chan-
nels and of flows in branched channels in the presence of
particles have not been considered yet, as far as we know,
even in low Reynelds number approximation,

Flows in the presence of permeable walls are rarely
considered, too. In [17] incompressible Navier—Siokes
equations are solved in a simply connected domain.
Dirichlet, pressure, and filtration B.C. are imposed; the
model is in velocity—pressure variables, and a finite volume
method is applied for its numerical solution.

2. GOVYERNING EQUATIONS

Here we consider the dimensionless form of the 2D
stationary Stokes equations for mcompressible fluid in a
general multiply connected domain € with boundary
=082 (see Fig. 1),

dive(v)+ F=0 ()
divv=0 (2}
G (V)= —08,p+(0,v;,+d;v,). (3)

where v is the velocity, p is the modified pressure (the
physical pressure divided by the viscosity u), o is the stress
tensor, and F is the vector of external mass forces.

We consider four types of B.C., supposing ['=
nubyolyuflfy,, H=rlvrfv..-, i=1,2,3,4 (see
Fig. | and below).

i. Dirichlet B.C. on
(4)

Vlrl=g.

i

a

FIG. 1. Principal sketch of the problem with boundary notations,

These B.C. are standard and are usually imposed at rigid
channel walls or rigid bodies (particles).

ii. Stress B.C. on I,

T = % —gnrli'zzﬁs (5)
where # and 7 are unit vectors directed to the outward nor-
mal and the tangent of ,, respectively. These conditions
are applied for flows past bodies at moderate Reynolds
numbers in [6].

In the case of a free outlet (inlet), which is supposed to be
a segment (e.g., 'y, see Fig. 1)}, when the stress tensor
components on /4 are supposed to be as in Poiseuille flow,
the right-hand side is taken in the form

a(s) = Poulsh;  PBls)=2U . ds)b?, (6)

where p,,, is the external pressure on %, 2b is the width of
I}, d(s) is the distance from the point P(s) to the middle of
5, and U, is the velocity maximum at I';. The function
f could be expressed in terms of the flux @ through 15 as
foliows:

B(s)=0f(s),
fls)= {(3/2) d(s)/b®>  plane case (7)
S] - (4/77) d(S)/b4 axisymmetric case.

It is clear from (7) that the function § is not known in
advance because the flux ¢ is unknown. For internal flows
this function depends on the solution.

i, Pressure B.C. on I';:

“O'nn|r3=Pou:§ v'!H'J:O' (8)
For internal flows we impose these B.C. on inlets (outlets)
of channels. If the inlet I} (see Fig. 1) is a segment then (8)
is equivalent to:

(9)

P\r; = Pouts Vz|r3=0-
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iv. Filtration B.C. on I,:

Vorrs =M= Conyry— Pom b y=7>0;

(10)

Vor,=0

This is an analogue to Darcy’s law—the flux through the
boundary is proportional to the pressure drop across i,
The B.C. (10) are imposed on permeable walls. The wall
thickness is supposed to be smail.

Everywhere in this paper in numerical examples p,, is
supposed to be a constant on each inlet (outlet), which is
partof Iy, I3, T,

The existence and uniqueness of the solution of the
problem (1)}-(10) in {(H'(£2))* x L(2) is proved in [3] (see
also the literature therein), where H '(£2) is the correspond-
ing Sobolev space, and LY(2)=L(2)n { [/, fdQ2=0}.

3. NUMERICAL METHOD

The principle of the virtual power for the problem
(1)-(10} in the space of divergence-free functions is
formulated as

alv, dv)=g(ov); vel ove V,, (11}
where V,={v/ve (H'(2))*, divv=0,v¥|,, =g, V.| =0},
in the plane case,

g

a(v, 5v):j 26,0, dx +y7! j v, Ov, ds,
2

Iy

p(dv)= ff

frufMhuly

pomévnds—f Bév, ds
2
+{ Favax,
2
and in the axisymmetric case
alv, 6v)= | (2, 66,+ /) v, 8v,) r dx
2
+}7_1J v, 0¥, rds,
Fa
(p(év):ﬂ—j poutév,,rds—J Bov, rds
Frolhuls I

+LF5vrdx,

where £;=(8,v,+2,v,)/2 and summation is supposed
i= I, 2: fi 1, 2; and XE(X,, x2)=(r, Z), V= (Vl! V2)=
{(v,, v.) in the axisymmetric case.

A finite element method is used for discretization of (11).
Two divergence-free finite elements, denoted QY and 02,
will be discussed. They correspond to different initial
velocity—pressure elements:

QY to Q,/P,. WNine-node biguadratic velocity and
linear pressure

ph=p0+p1()cl—x(loj)+p2(x2—x'20)), (12)

where x/@ = x4 x@ 4+ x4 x4, x . FE vertices;

Q¥ to 0./Q,. The same velocity approximation but a
modified one {or the pressure

Pr=pPo+t p1¢+ pan, (13}

where ¢ and n are the local coordinates of the standard
reference square [ —1, 1] x[—1,1].

Foliowing [9], after some transformations we obtain the
approximation for velocity in the form

vi= 2 (@M + 0,0+, 0 )+ 3 g,

fe 8|

(14)

ies;

where {u;}, {v;} are the two velocity components and {¢,}
is the mesh stream function at a set S, of vertices of
triangulation, and { g, } is the circulation at a set S, of finiite
element sides {a,} (see Fig 2), where g,=c(a,) Ia,- V. dy
{dy = ds in the plane case and dy = r ds in the axisymmetric
one), c{g;) is a normalizing constant such that g,.= O(1), 3,
is the initial nine-node biguadratic velocity approximation.
Transformations include obtaining the basic functions for
the fluxes {g;} at S,, where g,=J, ¥, , dy. The diflerence
between Q4 and Q2 is that v, satisfy (15) for Q17" and
(16) for 99’ on any element ¢ of the triangulation:

j(xﬁx;‘”)(v-v,,)dszso, s=1,2, (15
jc(v-v,,)d9=0,
' (16)
[ n(v-vyae=q,
g
Ugvg W R
g g
ugva ’ Ug¥y ¥

F1G. 2. Finite element employed.
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where d@2 =dx in the plane case and d2=rdx in the
axisymmetric one. Both QY and Q@ satisfy
{,V-v,dQ=0, so these FE give a divergence-free FE
discretization of (11), where pressure unknowns do not take
part.

The FE discretization (14) of (11} gives a linear system
with a symmetric and positive definite coefficient matrix
[3]. After solving it one can calculate the velocity com-
ponents at the midpoint of every FE side a; by explicit
formulae. If necessary, the pressure can be restored too. For
any element ¢ of the triangulation the values of p,, p,can be
calculated directly from
for Q%)

ps=—c—]a’(vh=NOEs)& S=1!2

(P:) ~_RB-! ((J'(Wn Noel)) for o),
P2 a(v,, Noe;)

where ¥, is the basic function of the central nede of & for
the standard nine-node biquadratic approximation, e, =
(1,0), e;=1(0, 1), C=L NodQ, By, ,= ((j Ny VEdQ), 4.
(. No Vi d),..,). The third type of unknowns { p,} of the
pressure approximation are restored by a marching proce-
dure. For an arbitrarily initial FE ¢, an arbitrary value of
piot is taken. If pi” is known and g, is the common side of
7 and 7, then pi° is calculated as

(17)

(18)

P =Pl % alvs @) (19)
and the sign depends on the direction of the parametrization
of the side. In this way the pressure may be restored by a
marching procedure, including an additive constant. If the
pressure takes any part in the B.C. (I, u I';u I, # () then
the value of the additive constant can be determined so that
Pk|r,= pc_)ut’ S=23 3a 4,

The numerical method is eguivalent to a velocity-
pressure finite element method [ 18, 19]. The standard error
estimate [ 3] holds for the approximate solution v, namely,

lv—vwlli+1p—pullo+ IR — R < CH (V5 + f pll)
v —viilo + I¥ =¥, 1. < CRUIv]5 + I pll)

(20)
(21)

if (v, pye (HYQ2)Y x (HH2)n LI(R)) and R=,. 5, dy is
the resistance force on the body with boundary 1, ||,
denotes the sup-norm in C(£2); |v|,, is the norm in
(H™2)),m=0,1,3;|pl..is the norm in H"(2),m=0, 2;
where H™(Q), m=0, 1, 2, 3, are the corresponding Sobolev
spaces. The proof is based on the abstract theory [20] for
the error estimate of Stokes problems.

In the numerical experiments the resistance force is
directly calculated by integration over those FE sides which
comprise the corresponding body boundary.

5B1/112/1-2

4. TESTS AND COMPARISONS
4.1. Comparison between Two Finite Elements

In this section we compare the finite elements Q"' and
Q4. The FE Q,/P, is widely used, e.g., [21-23], and is
considered the best for Navier-Stokes equations in many
applications. The FE Q,/0, does not seem to be tested
directly yet. Kim and Decker [24] compare both FEs in the
penalty approach and report that the results for the restored
pressure with the 0,/Q, FE are better. Results are reported
in [25] which show that Q'@ gives results for the velocity
about 30% better than 4"’ on the same grids,

The classical exact solution for creeping flow past a
sphere from [26] is used as a base of this comparison. If the
finite elements are nearly square, both compared elements
do not differ essentially, but in the case of considerably
deformed elements Q9 seems to be better. [t appears that
the Q'2’ element is less sensitive to the negative influence of
the FE distortion. Here we concentrate on comparisons for
the resistance force R on a body, which is often used as a
physically natural integral measure for the accuracy of
calculations in fluid dynamics (see [22] and references
therein}. On the other hand, R is the most poorly computed
among all basic characteristics of the flow—velocity field,
stream lines, pressure distribution, and resistance force.

So, we consider the exact solution for the flow past a
sphere [26]. The radius of the sphere is taken as a charac-
teristic length. The problem is treated in a gquarter domain,
using symmetry conditions in a (r, z) coordinate system. We
consider two approximations for the velocity: the FE inter-
polant of the exact solution on the grid, v,,, and the
numerical solution, ¥,. The pressure is restored on the base
of v, ; and v,, as mentioned in Section 3, and then the
resistance force approximations, R, ,and R,, are computed.
Only the layer of finite elements neighboring the body is
needed for determining the resistance and we shall denote
its thickness in the radial direction by r, ,. All grids which
are used in our computations are (i} topologically equiv-
alent to a reguiar grid in the unit square and (i} uniform in
the nonradial direction (N, denotes the number of FEs in
this direction), but they are rather nonuniform in the radial
direction. The grid with r, , =0.25 has ratios between the
first six layers of 1:1:2:2:3:5; the one with r, , =0.10 has
1:3:5:7:9:11; the one with r, , = 0.05 has 1:2:3:4:5:5; and the
one with r; ., =0.0]1 has 1:2:3:4:6:9. Let N be the number of
layers. We shall define a geometrical quantity d=r,/
(L/N,}as a measure of stretching of FE {(here L is the length
of the “spherical” part of the boundary). In Table 1 our
results on the comparison and characterization of the two
FE are presented. For every grid the first row presents the
results for QL7, the second one gives results for Q¢, and
the third one gives the ratio Q42?/Q'") in percents; || - || and
|-lq are discrete analogs (in the nodes of triangulation} of
the sup-norm and the L, norm.
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TABLEI

Comparison between Q4 and Q2! Finite Elements

IGRDANOYV

ra N N, 8 lv—ville  Iv=vilo [R—=Rj| |R—R,|
0.25 7 8 1.27 0000352  0.000140 0.0349 0.0311
0.000234  0.000107 00277 00236

66.48 7643 79.37 7588
0.10 7 8 0.51 0.000532  0.000188 0.0192 00172
000385 Q.000146 Qo122 00072

72.37 77.66 53.13 41.86
Qo5 12 8 Q.25 000381 4.000102 00222 Q0160
0.000158  0.000038 00124  0.0056

4147 37.25 55.86 35.00
001 20 8 0.05 0.000387  0.000095 0.1715 0.0158
0.000147  0.000030 0.1633 0.0055

3798 31.58 94.77 35.09
001 20 12 0.08 0.000193  0.000044 0.0369 0.0070
0.000144  0.000031 0.0323 0.0021

74.61 70.45 87.53 30.07

The results given in Table I confirm that @'’ is better.
With the decrease of 8, 09’ gives about as much as 60%
better results for the velocity. The deviation on the last grid
is probably caused by the error vailue approaching the
accuracy of our computation. The resuits for the resistance
are similar to those for the velocity but only for R,. With
decreasing 8, when v, , is used, a considerable deterioration
of the pressure restoration causes R, , to be pooriy com-
puted. It seems that the direct usage of the FEM solution to
compute the resistance force is not the best way to do it.
Perhaps a better result could be achieved by an indirect
procedure for determining R that is similar to the one
considered in {28] for the Laplace equation, where super-
convergence is proved. For the grid with r| , =001 and
N, =8 the error in pressure estimation is about 33 %, so we
tested a grid with r; , = 0.01 and ¥, = 12. The improvement
obtained was considerable for both R, and R, ,, and also
for the velocity, although R, , stili remains relatively poorly
computed. This shows that cases of significant deviation of
& from one requires some precaution.

Summing up, 42’ seems to be more promising than Q47
This was confirmed also by our experience with this FE and
the Lagrangian finite element method presented in [9]. We
employ 04 in all further computations.

4.2. Tests against Known Solutions and Numerical Methods

First we test our method against the exact Poiseuille solu-
tion for the plane flow in a channel and the axisymmetric
flow in a tube, respectively. In this case the pressure is con-
stant at the inlet and the outlet. We prescribe it at the inlet
and outlet of a channel of unit length and unit half width
{a tube of unit length and unit radius) and use four finite

FIG. 3. Example of triangulation.

elements for a uniform triangulation. As we expected, the
numerical solution coincides with the ¢xact one up to the
accuracy of the computer arithmetic, because the finite
elements are of second order.

Further, we consider the flow past a body in a channel in
the plane case. We take a centrally situated quiescent cylin-
drical particle of radius r. Then @ is symmetric with respect
to the channel central line. The problem could be treated in
a half domain and falls into the simply connected case. The
half of the channel width b is a characteristic length /_,, the
length of the channel is /.

It is often difficuit to decide how far from the body the
“actual infinity” should be placed in order to obtain correct
numerical results. Qur numerical experience suggests simple
criteria whether the inlet (outlet) is placed correctly. We
calcuiate the pressure distribution at the inlet (outlet). If it
is not constant with the desired accuracy, then the inlet
(outlet) is too close to the body. As a practical rule is used
1z max(5h, 12r). U r < b/3, results are satisfactory even for
[=4b.

We compare the numerical solutions obtained by this
method with Dirichlet and pressure B.C. for r=0.25b,
{=15b. The employed triangulation is shown in Fig. 3. Two
types of praoblems could be solved—prescribing a parabolic
profile for the velocity at the inlet and the outlet of the chan-
nel (Problem V), or prescribing the pressures 5+ Ap and j,
Ap >0 (Problem P), and zero tangential velocities. It is easy
to see that the numerical solution does not depend on the
constant . This has been also confirmed in the numerical
experiments.

Take the maximal velocity at the inlet, which is the
velocity at the central point 4 of the inlet, as a characteristic
velocity. To obtain the solution v{#’ of Problem P, first we
find a solution v{”’ of Problem P with an arbitrary pressure
drop 4p, and then we multiply ¥{”’ with the constant
1#7(4) to find the required solution v{?, which
corresponds to the pressure drop Ap/v{#'(4). Here we
essentiaily use the linearity of the mathematical model for
the Stokes case described in Section 2. The solution v{” of
Problem V is directly obtained.

The comparison between both solutions shows good
agreement:

Vi = Vil = IV = ¥ (2 e = 0000260
¥ — i o = 0.000070

“P,[r,v) - pip]” <, inlet/”p;,m”('.inlel = 000585
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TABLE 1I

Horizontal Force on a Quiescent Particle in Poiseuille Flow

r Faxen Dvinski and Popel Present method
0.10 5.7298 — 56183
0.15 6.9544 — 6.8935
0.20 81304 80535 8.0903
0.25 9.2983 9.1673 92635
0.30 10.4190 10.3045 10.3768
0.35 11.6074 11.4534 11.5484
0.40 12.7741 12,5727 126760
.45 14.0242 13,7110 13.7822
0.50 15.9348 150482 15,1398

Further, we check the accuracy of our algorithm with
pressure B.C. against the classical analytical solution of
Faxen [29] for a quiescent cylindrical particle in Poiseuille
flow. Dvinski and Popel [127] have used this solution to
verify their numerical method with Dirichlet B.C. and we
present their results, also. In the numerical experiments was
taken /==6bh. The triangulation used for calculations is
similar to the one depicted on Fig. 3. The characteristic
pressure and velocity are chosen as

Pon=Ap Ln/(21) = Ap b/(21),

Vch:pch[ch—_—bzdp/(z[)s

(22}
where / is the channel length. In this way we prescribe the
dimensionless pressure drop 2//b (Problem P) which would
generate unit velocity if there was no particle in the channel.
The results are showed in Table II.

Faxen’s solution is not exact and loses accuracy with the
increase of the diameter of the particle, which explains
the growth of the difference between the numerical and the
analytical solutions in Table I1. It is clear that our results
are in good agreement with both other solutions. In
Table 1IT the results for several different grids, where M is

TABLE III

Horizontal Force on a Quiescent Particle r = 0.3
in Poiseuille Flow for Different Grids

M Fli & Fapp Fraxen Err
112 0,025 0.265 10.3768 10.4190 —041
10.4243 10.3846 0.38
240 0.025 0.531 10.4410 10.3889 0.50
10.3794 10.3546 0.24
458 0.0125 0.265 10.4292 10.5860 —1.48
10,3038 10.1701 1.31
458 0.0125 0.663 10.3944 10.4018 —-0.07

the total number of FEs in the triangulation are presented;
ry, and & are the guantities defined in 4.1, F,,, and Fp .,
are the horizontal forces obtained by our method and by
Faxen solution, respectively, and Err=(F,,, — Fren)/
Frayeq 15 given in percents. The first row is for the P probiem,
the second one is for the V problem.

B0 |

50 1 S| B 1 1 4

0.1 0.2 0.3 0.4 0.5 0.5 d

0-0 1 1 1t

TR S EEY
0.1 0.2 0.3 0.4 0.5 0.6 d

_FIG. 4. Flow past an eccentrically placed cylinder r =0.3 in a channel:
(a) ratio of the flux through the greater gap Q, to the total flux ;. as a
function of the deviation 4 of the cylinder centroid from the central line of
the channel; (b) resistance force as a function of ¢; (—) present method,
(——-) Dvinsky and Popel [14 J; (c) torque as & function of 4: (—) present
method, (——) Dvinsky and Popel [14].
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TABLE IV

Comparison between Analytical and Numerical Solution
of a Problem with Filtration B.C.

¥ ¥, ¥l Err, Erry
0.000t 0.008660 0.000194 0.0013 0.0008
0.001 0027336 0018898 0.0049 0.0034
0.01 0.086603 0053921 . 0.0523 0.0426
0.1 0.273861 0.136066 0.8311 0.9973
1 1 0.385924 2.4009 3.0516
-10 10 2064722 17.645 32.020

Decreasing r, , and refining the grid may not improve,
but may even deteriorate the results, if & is small. Only if §
is near one does the numerical selution corresponding to
the refined grid seem to be better. This conclusion is like the
one in Section 4.1.

We consider also the case of an eccentrically situated
quiescent cylindrical particle with the deviation of the
particle centroid from the central line of the channel . The
inlet flux Q. gives a characteristic velocity here and @, is
the flux through the greater gap between the particle and the
walls. We show our results for O, in Fig. 4a and also the
results for the horizontal force and the torque, together with
those obtained from Dvinski and Popel in [ 14] in Figs. 4b
and'c. Again, a good agreement of both presented numerical
results can be noted.

Finaily, we check the accuracy of the numerical method
with filtration B.C. against the analytical solution described
in the Appendix for the plane case. The anaiytical solution
is valid in the Stokes case and for y < 1. We denote Err, =
Iv =l /I¥l and Ertg=[v—v,{o/Ivls, where v is the
analvtical solution and v,, is the numerical one obtained by
the presented method. In Table IV both solutions are
compared; Err, and Err, are given in percentages.

When vy increases, the validity of the analytical solution
diminishes, which explains the growth of the difference
between both solutions.

4.3, Stress B.C. or Pressure B.C.?

The application of the stress and the pressure B.C, does
not differ for the external flows or if the maximal velocity or
the flux @ through the inlet {outlet) is known. But the flux
¢ is not known for the problems discussed here. The
function f from B.C. {5) 15 not known and, hence, the
corresponding term does not belong to the right-hand side
in (11). If we denote «,(v,dv}={, fov dy, o (dv)=
~Sroror Pom OV, dy+ [, FovdQ from (6), (7), it
follows that

(v, 5v)=QL /5vta’y=2Umxb‘2J‘r dov,dy, (23)

and the linear system of Eqgs. (24) for (11) will transform
into (23) as

AU=F, (24)
(A+ AN U=F™, (25)
where A!-‘j= a((b,-, @j), AE‘l}:w](d’j, dsj), F}=(P(¢J;),

FiV=¢ (@), and U is the vector of unknowns, The matrix
A" is not symmetric nor positive definite but its elements
arc of order O(#) while the elements of A are of order O(1).
Hence the symmetry of the system is lost bul it is expected
that positive definiteness will be preserved, at least for fine
meshes.

System (25) can be solved directly but the cost will
increase because of the asymmetry. This approach still
seems acceptable for the case of Navier-Stokes equations
with its natural absence of symmetry, but it is not clear if the
additional term (23) deserves so much attention in the
Stokes case.

We belicve that in our case it is better to keep this term
in the right-hand side using an initial guess for @ and then
correcting it, Il we use iterative methods for the system (24)
this will bring about no additional comphlications, provided
that the convergence is not influenced. It is not so expensive
to solve the same system with a number of different right-
hand sides. For mechanical reasons we expected that such a
simple iteration procedure would converge rapidly.

We performed a number of experiments to see how it
works. First we considered again Poiseuille flow, and we
intentionally used a bad witial guess for I/ ., to check how
it would converge towards its correct value of one. The first
one or two iterations smoothed essentially the initial error,
see Table V.

Further, we studied the influence of the deviation of the
initial guess on the solution for a flow in a branched channel
(Fig. 5). The branches are deliberately set short, their
lengths are equal to each other and are equal to their widths.
The dimensionless pressure at the inlet is 20 and at both
outlets it is 10. This problem cannot be solved with Dirichlet
B.C. because the fluxes through the outlets are unknown.
The problem has been solved in three variants: with
pressure B.C. at the inlet and outlets (PPP), with pressure
B.C. at the inlet and siress B.C. at the outlets (PSS), only
with stress B.C. (S8S), and for different grids (M denotes the
total number of FEs in the grid). If there are stress B.C,,

TABLE V

Convergence of the Velocity for Stress B.C.

Case Iteration 0 1 2 3 4
Plane 0.5 1.05214 099479 100054 0.99994
Axisymmetric 0.5 103573 099744 1.00018 0.99998
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FIG. 5. Geometry of test branched channel.

some iterations are carried out. For any inlet or outlet
{where &' is its width ) /™% is obtained for the first iteration
always by projecting the vector (0, 1), and U™ for the
{k + 1)th iteration is set to 0.75Q"Yb’ (according to {6) and
{7)). The results are presented in Table V1. The subscript i
is for inlet; 1 is for the lower outlet; 2 is for the upper outlet.

The first grid used (M = 20) was rather coarse and the
difference of 2 % for the inlet flux @, with regard to the finest
grid seems acceptable. We want to show that at least for
Stokes case the presented method works relatively well on
coarse grids.

These experiments confirm that the simple iterative
procedure for the case of stress B.C. converges very fast for
various geometries. The data presented in Table V1 show

TABLE V1

Comparison of Different B.C. for Flow in Branched Channel

M 2. Q1 O, (Q/ET™)x100% (Q,/Q)) % 100%
20 PPP 15026 0.7866 07160 98.09 52.35

PSS! 15036 0.7760 0.7276

PSS? 1.5021 0.7867 0.7153 98.05 52.37

§88!' 1.5083 0.7785 0.72%8

8887 1.5030 0.7873 0.7158

8887 1.5032 0.786% 0.7163 98.13 52.35
80 PPP 1.5257 0.7873 0.7384 99.60 5160

PSS! 1.5270 07760 0.7510

PSS? 1.5251 0.7878 0.7373 99.56 51.66

SSS' 15314 0.7785 0.7529

§§5? 1.5249 0.7878 (.7371

8387 1.5251 0.7874 0.7377 99.56 51.63
160 PPP 15319 07862 0.7457 100.00 51.32

that solutions of PPP, PSS, and S8S problems are very
close if the grid is the same (the difference between fluxes is
less than 0.1%). So the stress B.C. does not seem to be
essentially better than the pressure ones for the Stokes
equations and, thus, there is no payolif for the mentioned
numerical complications in the case of stress B.C.

To support this conclusion, we performed a comparison
between velocity, pressure, and stress B.C., using the
resistance force as an integral measure for the accuracy of
the solution. We considered once again the flow past a cen-
trally situated quiescent cylinder in a channel for r =0.254,
=1, +1,,, where [, {,.) is the length between the inlet
{outlet) and the particle centroid (see also the notation in
Section 4.2). If [, = 2.4, according to Section 4.2, the inlet is
placed far encugh from the body to apply correctly velocity
B.C. The maximal velocity at the center line is chosen as the
characteristic velocity. We applied velocity, pressure, and
stress B.C. at the outlet and varied the distance /,,,. From
Table I we knew the value of the resistance force well
enough. In this way we compared the sensitivity of the three
kinds of B.C. to the truncation of the computational domain
past the body. The resuits are presented in Table VII. The
triangulation used is similar to the one presented on Fig. 3,
but the FEs at the outlet zone are made shorter.

The error in resistance Er!) is defined as {R'"’ — R")/
R'**! (given in percentages) and R*' is calculated on the
base of Faxen’s solution; the upper index = is v, p, or ¢ for
velocity, pressure, or stress B.C.; the maximum of the
module of the velocity at the outlet is ¥%); the deviation of
the point where V{7 is achieved from the central line is d*;
the maximum of the tangential velocity at the outletis V(")
and the velocity at the central point at the outlet is ¥,

As we expected, the velocity B.C. yield poor results if the
outlet is placed closer than four particle radii from the body,
and the error grows very fast. The pressure and stress B.C.
are better and both display a comparabie accuracy. Even
though the zero tangential velocity condition is clearly
unphysical the pressure B.C. give the best results for all
values of /.

The general conclusion from these results is that the stress
B.C. should be used only if the pressure B.C. seems to be
clearly unfit for the considered problem.

TABLE VII

Comparison of Resistance for Velocity, Pressure, and Stress B.C.

lw Ei  Ex Bz VLoV dnody VI, VoI
24 —038 -—0.38 —0.38 100 L0 00 00 —0.00 100 LOO
1.5 —036 —038 —-041 0587 097 00 00 -—-003 097 0.97
1.0 112 —0.50 —1.37 084 084 04 04 —015 077 0.78
0.7 1144 =261 —633 097 093 06 06 —-030 039 045
05 5128 —890 —1488 L14 106 06 06 -—037 007 0.20
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5. SAMPLE APPLICATIONS

The particular applhications of the method discussed in the
paper are of three kinds. We consider first a flow past a
system of bodies in a channel at a given pressure drop. Here
numerical results are presented for two particles but the
method is as well applicable to a greater number of particles.
Such probiems are important for the theory of suspensions,
flows of erythrocytes in capillaries, hemorheology, and for
heat-mass exchangers. The second kind of applications
includes flows in branched channels and channel networks,
with or without particles, driven by pressure drops. Such
problems are related to, e.g., blood flow through micro-
vessels. The third kind inciudes flows in channels or tubes of
arbitrary shape and with filtrating walls, which are related
to, e.g., ultrafiltration technology. In all cases considered
below the flux through the inlet, the outlet, or the permeable
wall is not known.

There are a number of numerical examples of flows past
a system of fixed bodies with Dirichlet B.C. at the “inlet” in
an infinite liquid, e.g., a nest of cylinders [24 ], modelling a
heat exchanger in a nuclear reactor, or wings [ 23], related
to a section of a turbomachine. As far as we know, such
problems have not been studied in a channel.

A flow past two cylinders in a channel is presented in
Fig. 6. Only the haif-domain is depicted because of the sym-
metry of the problem. The channel half-diameter is chosen
as a characteristic length. The radii of the particles B, and
B, are equal to (0.2 and the distances of their centroids from
the upper wall W, are d, = 0.5, 4, = 1.2. The channel length
is {=13 and the pressure B.C. are used at the inlet and the
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FIG. 6. Flow past two bodies in a channel.

outlet with pressure drop Ap == 6, which corresponds to the
actual channel length and the formulae {22). The total flux
through the channel is 13.21% from the one in the same
channel without particles. The flux through the first gap is
Quw, 5 =00240 (width w=03, Q.. 5/Qw u,=13.63%)
This is relatively iess than in the second one Q ,, 5, = 0.0365
(width w=03, Qp45/Cuw,=2073%), due to the
influence of the walil. The flux through the third gap is
Qau,=0.1156 (width w=0.6, Qzu,/0w,u,=03.64%),
which is much greater than the previous cnes when related
to unit length (2Qy /@ p,n,=41.52%, 205 5,/Cpp, =
63.15%). This is due to the interaction of both bodies as a
whole with the flow. They play the role of one complex
obstacle in the channel and the main flow goes under them.
As might be expected, the maximum of the velocity at the
gaps between the particles and walls is closer to the body,
due to its round shape, and at the middle it is at the gap
between both bodies. The resistance force at the first
particle, R,=18279, is smaller than at the second
one, R,=21258, as well as the torques 7,=0.00372,
T,=0.09320, because the flow is stronger at the central
region. The flow exerts a force that tends to rotate both
particles in an anticlockwise direction.

Three examples of flows in branched channels are
presented next. In all cases the characteristic length is the
half-diameter of the root channel and the length needed for
the definition of the characteristic pressure (22} is the sum
of the length of the root part /, and of one branch /,, where
{, s measured from the inlet of the channel to the junction
point (or points), {, is measured from the junction point to
the end of the branch {e.g., I, =4, B, [,,=4,C,= 4,C,,
l,3=A,8,;see Fig. 1). All branches are taken with the same
length and diameter 4,, and with equal pressure p, =0 at
their outlets, but the junction angles with the root part (e.g.,
Oy =0, oty =0, 2,;=1u,; see Fig. 1) vary.

First we consider a flow in a triply branched channel with
{,=5,1,=4(dp=18),d, =%, and the junction points lying
at lines parallel to the center line of the channel at distances
% from the nearer wall. The middle branch Br, s a horizon-
tal one, the upper one Br, joins with angle «,, which varies,
and the lower one Br;, with a;=45" Pressure B.C. is
applied at the inlet and the outlets, and the results are
presented in Figs. 7a, b. The maximal total flux through the
channel Q7" =0.2974 is achieved for o, =90° which is
again only 22.31 % of the flux in a simple channe! with the
same length. In general, the influence of the junction angle
a, 1s not great for Stokes flows. In this case the distance
which the fluid runs is a more decisive factor than the
disposition of the branches with respect to the central line of
the channel. For the end branches the way of measuring /,,
determines a decrease of the integral distance from the inlet
that is proportional to the increase of the junction angle.
As can be seen in Fig. 7a, for a, > 30° the flux through
Br, is already greater than the one through the middle
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FIG. 7. Flow in a triply branched channel: (a) ratios of the fluxes 0,
0., Q; through the branches to the total flux Q, as functions of junction
angle &; (b) ratio of the total flux @, to the maximal total flux Q7 (for
%, =907) as a function of a;.

branch—the influence of the wall in the root part of the
channel is compensated by the decrease of the integral
distance for Br,.

We consider as a second example the flow past a centrally
situated cylinder in a branched channel, [,=35, [,=3
{(4p =16}, d, = 1, the junction point being at the center line
of the channel, r.,=0.5, the distance from the particle
centroid to the inlet equal to 3; angle o, varies and «, = 45°.
This is a natural generalization of problems for flows past a
body in a channel [267]. Our results are presented on Figs.
8a, b, c. Now the maximal total flux through the channel
Q7 =0.2352 and again it is obtained for o, =90".
Figure 8a confirms the general conclusion for Stokes flows
that the distance which the fluid runs is more important
than the disposition of the branches. The hydrodynamic
interaction of the particle with the branches is weak, as
Fig. 8b shows us. It is interesting that the flux (4., through
the gap between the wall of Br, and the particle is always
less (greater) than half of the total flux @+, when the flux ¢,
through Br, is greater (less) than half of Q. The slope of
the graph in Fig. 8b is reversed when « < 75°, compared to
the one in Fig. 8a. Indeed, the scale of the graph in Fig. 8b
is 50 times smaller than the one in Fig. 8a, but the accuracy
of our method is great enough to assure that this result is
not caused only by numerical noise.

A natural development of the problem is to investigate
the motion of a drop in a branched channel, which is also a
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FIG. 8. Flow past a rigid body in a branched channel: {a) ratio of the
flux @, through the branch with fixed junction angle x, =45° to the total
flux @, as a function of junction angle a,; (b) ratic of the flux Qg
through the gap between the wall of the branch with fixed junction angle
and the rigid body to the total flux @ as a function of o, ; (c) ratio of the
total flux Q7 to the maximal total flux Q7> (for x, =90°) as a function
of a,.

simple model for a flow of an erythrocyte in a microvessel.
For solving of this Navier-Stokes problem we use the
method, presented in [9], which is based on a Lagrangian
approach, a fully implicit time scheme, and a mesh redefini-
tion procedure. Once again, pressure B.C. are used at the
inlet and at the outiets, The pressures are p,e =2, pp1 =0,
pgs.=1, where B1 is the upper branch and B2 is the lower
one. The Reynolds number of the suspended fluid is
Re, = 10 and that of the drop Rey = t. The Weber number
of the free boundary is We = 3. In Fig. 9 the state of the drop
is pictured at several times,

Finally, we consider a flow in a tube with fiitration
through the walls and with a rigid, centrally placed spheri-



22 SHOPOV AND IORDANOYV

FIG. 9. Pressure-driven motion of a drop in a branched channel.

cal particle. The tube has three parts—cylindrical parts with
rigid walls at the ends and a conical part with permeabie
walls in the middle. Every part has unit length in the central
line direction; the radii are r,. = 1, roune = 0.5. The particle
radius is ry,, =05 and the distance betwcen the inlet and
the particle center in the central line direction is d=1.5 A
characteristic pressure is chosen according to {22), where
/=13, but the constant 2 in (22) has to be replaced by 4 in
the axisymmetric case, and then 4p = piyjer — Pouwner = 12 for
the dimensionless pressure. The flow for y=0.01 and
Pintet = 12, Povttr =0, P =6 is presented on Fig. 10. The
total flux through the narrowing tube with filtrating part
without particles is 26.38 % from the flux in a cylindrical
tube with unit radius, with rigid walls and without particles,
and 11.70% if there is a particle with shape, size, and dis-
placement as was described. The loss in the flux through the
filtration part of the wall is 53.70 % and 84.38 % of the total
flux in the first case and in the second case, respectively,
although the permeability of the filtration part is smali and,
even in the second case, there is a weak influx through a por-
tion of the filtrating walls (se¢ Fig. 10), so there is an outflux
only through part of the filtrating walls. These results
suggest again the general conclusion for Stokes flows that
the distance which the fluid runs is a rather decisive factor.
Here this factor influences more than the permeability of the
walls. The presence of the particle only amplifies the {lux
through the filtration part of the walls.

FIG. 10. Flow past a rigid body in a narrowing tube with filtration
through the walls.

6. CONCLUSIONS

In this paper we propose a finite element algorithm of
divergence-frec type for Stokes equations with pressure,
stress, and filtration boundary conditions, which is equally
applicable to simply and multiply connected domains. It is
typical for the considered problems that the flux through
parts of the boundary is unknown. The tests for com-
parability with known solutions, as well as the existing error
estimates, prove that the treatment of the mentioned
problems with our method yields no more complications
than in the case of standard Dirichlet B.C. On the other
hand, such boundary conditions are more natural for many
mechanical and engineering problems.

Some experiments ate also performed with stress B.C.
They show good agreement with resuits obtained by the
application of pressure B.C. Usually stress B.C. are
considered to yield more exact results than pressure B.C.
because the first are more flexible at the outlets. The
results presented here do not confirm such an opinion
in the case of Stokes equations—both types of B.C. yield
approximately the same accuracy and which type of them is
better depends much on the problem.

We present some numerical examples to create an idea for
the scope of possible areas of application of this method.
Our main objective is to develop a divergence-free numeri-
cal method for general Navier-Stokes equations in domains
with both fixed and free boundaries with imposed pressure
and filtration B.C., having in mind a wider field of appiica-
tions, e.g., viscous cavitation or capillary motion in tubes
with dynamic contact lines. We hope to present numerical
examples for moderate Reynolds numbers in a following
paper.

APPENDIX

The analytical solution for the flow in an infinite channel
(only with an inlet) with permeable walls for the plane case
can be obtained. Because of symmetry of the problem we
solve it in a half domain.

Let Q={(x,y)x>0ye(0,H),H>0}, o2=I"vu
"o ywhere I = {{x, HYx 20}, "= [{0, p)/ye(0, H)},
Iy=1{x,0)/x20} (location of filtration B.C.) and v=
(1, v). We suppose that p = p(x) and neglect the terms 87 _u,
8%.v+ 82 v, which is correct if y <1, as will be explained
below. Then Egs. (1)—(3) are equivaient to

dpjdx = &3 u, d.u+d,v=0

I p i r, = const and dimensionless pressure is defined as
p*=1(p— Pou)/Per, then the B.C. on I, take the form

U, =0, Uir,= — P
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Solution of the problem can be obtained with the B.C. on
I"and I'" as

dup=0,  v=0,

Pir= p(0}= po,

and assuming that the solution is bounded at infinity. Then
it is given by

ulx, y) = —1po3y/H )" exp(— (37/H°)'" x)
x (y*—2Hy),

v(x, y)= —¢ po(3y/H*) exp(— (3y/H*)? x)
x (y3 = 3Hy? +2H?).

It can be shown that 82 _u=0(y*?), 8,,v* + 8,,0> = O(y)
and neglecting them is correct for y <1. For numerical
experiments the domain 2'=02n {(x, y)/x<2} is con-
sidered and H =1, py=1 are taken.
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